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Abstract—HiCCL (Hierarchical Collective Communication Li-
brary) addresses the growing complexity and diversity in high-
performance network architectures. As GPU systems have
evolved into networks of GPUs with different multilevel com-
munication hierarchies, optimizing each collective function for
a specific system has become a challenging task. Consequently,
many collective libraries struggle to adapt to different hardware
and software, especially across systems from different vendors.
HiCCL’s library design decouples the collective communication
logic from network-specific optimizations through a composi-
tional API. The communication logic is composed using multicast,
reduction, and fence primitives, which are then factorized for a
specified network hieararchy using only point-to-point operations
within a level. Finally, striping and pipelining optimizations
streamline execution.

Performance evaluation of HiCCL across four different ma-
chines—two with Nvidia GPUs, one with AMD GPUs, and
one with Intel GPUs—demonstrates an average 17× higher
throughput than the collectives of highly specialized GPU-aware
MPI implementations, and competitive throughput with those
of vendor-specific libraries (NCCL, RCCL and OneCCL), while
providing portability across all four machines.

I. INTRODUCTION

Communication libraries in high-performance computing
(HPC) for scientific applications and machine learning of-
fer collectives—standard functions such as Scatter, Reduce,
and All-Reduce [30] that involve coordinated communication
across processors. Our evaluation on leadership-class GPU
systems revealed that the throughput of available library col-
lectives is either not optimized in GPU-aware MPI implemen-
tations (e.g., MPICH [15] and OpenMPI [12]) or have limited
cross-vendor portability (NCCL, RCCL and OneCCL). These
performance and portability issues motivated us to develop
a library design capable of producing throughput-optimized
collectives portable across diverse network architectures and
GPU programming models. However, there are many collec-
tive functions, each requiring a unique optimization strategy
depending on the network architecture [31], making it unpro-
ductive to hand optimize a collective for one system and then
repeat the process when porting to another system.

Modern systems typically feature a network comprised of
multiple compute nodes each housing multiple GPUs [5], [9]–
[11], which results in a nonuniform interconnect architecture
among the GPU endpoints. Specifically, the network is hi-
erarchical: GPUs within the same node communicate via a
high-throughput intranode network, while GPUs on different
nodes communicate through a lower-throughput network that
links the nodes. Consequently, the bandwidth available for
GPU communication is influenced by their placement within
the hierarchical network architecture [28]. This hierarchy can
extend to multiple levels, such as GPU dies in a device,
devices across NUMA nodes, or nodes within racks, where
communication bandwidth decreases at higher levels of the
hierarchy, making data transfer between more “distant” GPUs
costlier. Efficient hierarchical communication relies on having
lower volume at higher levels of the hierarchy [3], [19], [24],
which is currently achieved with carefully hand-designed and
optimized implementations of collectives.

Our aim is to provide both high throughput and performance
portability for collective communication operations across
diverse hierarchical networks with GPUs of different ven-
dors1 while also automating much of the process of building
optimized collectives. We present a method for constructing
collective communication operations that achieves these goals
in two steps: First, we specify the communication pattern for a
collective operation as a composition of multicast, reduction,
and fence primitives (Section III). Second, we identify and
implement a number of optimizations that can be mechani-
cally applied to the given composition (Section IV). These
optimizations include striping communication across multiple
network interface cards (NICs), pipelining communication in
multiple stages, and whether to use a customized tree, ring,
or hybrid virtual topology to best match the target network
hierarchy. Combining these optimizations with a machine-
specific description that fills in important constants (e.g., the
number of levels in the hierarchy and the base communication

1Today’s major GPU vendors are Nvidia, AMD, and Intel.



library to use for each level), users can create highly optimized
collective operations tuned to a specific network. When porting
between machines, only the machine description needs to
change; the specification of the logic of the collective operation
can be automatically optimized for the target network using
the new machine description.

Our optimized collectives rely only on point-to-point com-
munication functions of standard communication libraries and,
when available, vendor-provided capabilities for a specific ma-
chine. This implementation strategy gives us both maximum
flexibility to use the best point-to-point primitives for a specific
level of a network hierarchy while also ensuring maximum
portability (Section V).

We have implemented these ideas in a hierarchical collective
communication library, HiCCL, which provides an API to
build collective functions and apply hierarchical optimizations.
HiCCL provides performance portability across systems of
different shapes and sizes and of different vendors. We make
the following contributions:

• We introduce a machine-agnostic specification of col-
lective functions using multicast, reduction and fence
primitives. We show these primitives are sufficient to
express all collective functions in the MPI standard and
their alternative implementations.

• We identify a set of unified hierarchical optimizations that
are applicable to any collective function composed with
the proposed primitives. We show how the optimizations
adapt to diverse, modern GPU systems, and are sufficient
to saturate the throughput of the various networks.

• We introduce HiCCL2: a hierarchical communication
library which integrates multiple communication capabil-
ities without relying on existing collective functions. We
demonstrate HiCCL’s performance portability by match-
ing or outperforming available MPI and vendor-provided
libraries on different systems with Nvidia, AMD and Intel
GPUs.

We evaluate HiCCL on four current HPC systems—
Delta [11] and Perlmutter [5] with Nvidia GPUs, Frontier [10]
with AMD GPUs, and Aurora [9] with Intel GPUs—and on
eight collective functions that are listed in Table I. HiCCL
achieves 17× geomean speedup over the native MPI im-
plementations across all platforms. Furthermore, it delivers
competitive (1.27× against NCCL/RCCL), and in some cases
superior (12.1× against OneCCL), throughput compared to the
libraries provided by the GPU vendors.

II. BACKGROUND

This section provides an overview of collective functions
and hierarchical communication on multi-GPU, multi-NIC
node architetures.

A. Conventional Libraries and Collective Functions
MPI [29] is a well-established standard for message pass-

ing in distributed computing, with numerous implementa-
tions [12], [15], [20], [26]. GPU-aware implementations of

2https://github.com/merthidayetoglu/HiCCL

TABLE I: Collectives of MPI, NCCL, RCCL and OneCCL.

Collective MPI NCCL / RCCL OneCCL
Scatter MPI_Scatter
Broadcast MPI_Bcast ncclBcast ccl::broadcast
Gather MPI_Gather
Reduce MPI_Reduce ncclReduce ccl::reduce
All-to-all MPI_Alltoall ccl::alltoall
All-gather MPI_Allgather ncclAllgather ccl::allgatherv
Reduce-scatter MPI_Reduce_sc. ncclReduceSc. ccl::reduce_sc.
All-reduce MPI_Allreduce ncclAllreduce ccl::allreduce

MPI are available for almost all systems, including our test
systems. NCCL [23] is a vendor-provided library, specifically
developed for Nvidia GPUs and based on CUDA. RCCL [1]
is an analogous library provided by AMD, mirroring NCCL’s
API for compatibility but based on HIP. OneCCL [21] is
Intel’s collective communication library. The NCCL, RCCL
and OneCCL libraries offer the standard collective communi-
cation functions in Table I, while MPI’s API offers additional
functions not shown [16].

B. Hierarchical Communication

Hierarchical GPU networks involve groups of GPUs orga-
nized into nested, multi-level structures, where groups within
a level share the same number of GPUs. Normally inter-group
communication bandwidth is lower than intra-group bandwidth
on each level, so the aim of hierarchical communication
strategies is to minimize data transfer volumes between groups
at all levels.

As an example, we illustrate a simple two-level hierar-
chy with two groups of nodes, each with three GPUs. We
describe a process for broadcasting d bytes from GPU 0
to all other GPUs. Figure 1(a) shows direct communication,
where orange represents communication within the root node
(the node with GPU 0) and blue represents communication
across nodes. All five transfers move all d bytes, which is
unnecessary. In contrast, hierarchical communication breaks
the communication across nodes into two stages as shown
in Figure 1(b): The first stage sends a single copy between
the nodes (blue), and the second stage distributes the data
within the sending (orange) and receiving (maroon) nodes.
While direct communication has only a single stage where all
transfers are done in parallel, in general inter-node bandwidth
limitations will result in the direct strategy being much slower
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Fig. 1: Broadcasting d bytes across six GPUs with (a) direct and (b)
hierarchical methods. Each black dot corresponds to a GPU endpoint. Each
set of three GPUs corresponds to a compute node. (a) Direct implementation
redundantly moves three copies of data across nodes (in blue). (b) Hierarchical
optimization moves a single copy across nodes (in blue), and distributes
additional copies within each node (maroon).



than the hierarchical strategy. Furthermore, pipelining can be
used to hide the overhead of multiple stages, a technique
further discussed in Section IV-E.

C. Communications Across Multi-NIC Nodes

To provide adequate compute-to-communication ratios,
multi-GPU nodes now incorporate multiple NICs [8], [32].
Our experiments with other communication libraries on our
test systems show that each process is assigned to a single
NIC statically throughout the lifetime of an application. As
a result, in the common case where each process manages a
single GPU, each GPU is implicitly bound to a single NIC.
Consequently, both the direct and hierarchical implementations
in Figure 1 utilize only a single NIC for communication
across nodes. We address this limitation by offering multi-NIC
striping with HiCCL, detailed in Section IV-C.

When using multiple NICs to handle the communication
from a single GPU, it is important to understand exactly how
that binding is done. Figure 2 shows g-to-k bindings within
a hypothetical node of g GPUs and k NICs. When g is an
exact multiple of k, we assign GPUs to NICs in a load-
balanced way with (a) packed and (c) one-to-one mappings,
which achieve the full bandwidth across nodes when all GPUs
send/receive the same amount of data. However, when g is
not a multiple of k, we use a (b) round-robin assignment that
may lead to load imbalance across the NICs. Consequently,
the utilization is only 75% of the theoretical bandwidth when
all GPUs send/receive the same amount of data in Figure 2(b).
This under-utilization will have implications in our evaluation
in Section VI-C5.

GPU CPU NIC BindingPCIe Link
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0 21
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(a) Packed (b) Round-robin (c) One-to-one

Fig. 2: Various associations across g GPUs and k NICs per node (k ≤ g). In
our test systems, each GPU is logically bound to a single NIC via (a) packed,
(b) round-robin, or (c) one-to-one associations.

III. COMPOSITION OF COLLECTIVES

HiCCL has a compositional design built on three primitives:
multicast, reduction, and fence.

A. Collective Primitives

The simplest communication building block is point-to-
point communication between two GPUs. Directly expressing
collectives using point-to-point semantics often results in sub-
optimal performance due to obscuring opportunities for the
optimizations discussed in Section II-B. Therefore, we find
it beneficial to use three higher-level primitives, which are
ultimately implemented using point-to-point communication
after optimizations have been applied.
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Fig. 3: The (a) multicast and (b) reduction primitives form a simple tree
structure with one root and multiple leaves.

The multicast primitive M(i, j, d) expresses a one-to-many
dependency between GPUs shown in Figure 3 (a), where the
root GPU with rank i replicates d bytes of data to multiple
leaf GPUs whose ranks are represented by the vector j. The
leaf GPUs may be a sparse subset of all GPUs.

The reduction primitive R(i, j, d, op) expresses many-to-
one dependencies shown in Figure 3 (b), where data of size
d at the leaf GPUs i are reduced to a single datum at the
root GPU j. The reduction primitive additionally involves a
computational operation such as sum, max, logical or, etc.

If the leaf set involves all GPUs, the multicast and reduction
primitives correspond to the traditional Broadcast and Reduce
collectives, respectively. On the other hand, when there is a
single GPU in the leaf set, the primitives simplify naturally to
point-to-point communication (with an omitted unary opera-
tion in the case of reduction).

Multiple multicast and reduction primitives can be com-
posed by registering them in a persistent global communicator,
HiCCL::Comm<T>; the semantics are that all registered
primitives will be executed in parallel. The communicator
is templatized over the communicated data type T. Each
primitive registration is made with an invocation of the C++
API shown in Listing 1. The registration functions accept
pointers to the communication buffer (sendbuf / recvbuf),
number of elements (count), ranks of the sender and receiver
GPUs in scalar (i and j), and ranks of the receiver and
sender GPUs in vector form (j_vec and i_vec) when
registering a multicast or reduction primitive, respectively. The
operation for a reduction is expressed by the last argument
(HiCCL::op) of the registry function in Listing 1.

void Comm<T>::add_multicast(T *sendbuf, T *recvbuf, size_t
count, int i, std::vector<int> j_vec);

void Comm<T>::add_reduction(T *sendbuf, T *recvbuf, size_t
count, std::vector<int> i_vec, int j, HiCCL::op);

void Comm<T>::add_fence();

Listing 1: C++ API for registering primitives.

B. Single-Step Collectives

A single-step collective is composed of one or more primi-
tives that are executed concurrently in a single step. If there are
any race conditions between primitives, the result is undefined.
Table II (Single) shows the realization of the standard col-
lective communication functions using single-step collective
functions. For consistency, the largest buffer size is chosen
as dp, where p is the total number of GPUs. Summations Σ



TABLE II: Composition of Collective Functions on p Processes

# Steps Collective Composition

Single

Broadcast M(i,U , dp)
Reduce R(U , j, dp, op)
All-gather

∑
i M(i,U , d)

Reduce-scatter
∑

j R(U , j, d, op)
All-reduce

∑
j R(U , j, dp, op)

Scatter
∑

j R(i, j, d, op)
Gather

∑
i M(i, j, d)

All-to-all
∑

i

∑
j M(i, j, d)

Multiple

Broadcast All-gather · Scatter
Reduce Gather · Reduce-scatter
All-gather Broadcast · Gather
Reduce-scatter Scatter · Reduce

All-reduce Broadcast · Reduce
All-gather · Reduce-scatter

express the parallel composition of multiple primitives into a
single-step collective (the vector U represents all participating
GPUs). The range of the summations is (0, p − 1). The
summations (and so the registration of primitives) can be
performed in any order. For example, Broadcast and Reduce
can be expressed with a single primitive, which directly maps
to a single line of code in HiCCL. All-to-all requires p2 point-
to-point primitives, and can be expressed with two nested loops
and a single call to a primitive in three lines of HiCCL API
code. The rest of the single-step collectives require p primitives
that can be written using a loop with a single primitive in two
lines of API code.

The top half of Figure 4(a) visualizes the composition of a
Reduce-scatter on three processes, where the initial data is 3d
bytes per GPU. It takes three primitives, R0, R1, and R2, to
reduce the partial data with length d on each GPU.

Single-step collective design may yield redundant data
movement. For example, the All-reduce in Table II (Single)
is not efficient because the total data moved is dp2. This
problem can be solved by formulating All-reduce as Reduce-
scatter followed by an All-gather, which moves data of size
dp (see Figure 4). The problem is that the All-gather depends
on the result of the Reduce-scatter, violating the single-step
design principle. We next describe the design of such multi-
step collectives.

C. Multi-Step Collectives

A multi-step collective is a sequence of single-step col-
lectives, where each step depends on the previous step. For
composing multi-step collectives, HiCCL exposes a fence to
express data dependencies. Table II (Multiple) shows example
formulations of composite collectives as a sequence of two
single-step collectives. In this algebraic formulation, the order
of operations is from right to left, where · represents the fence
between the operations.

We use All-reduce3 as a motivating example because its
multi-step form is more efficient than the single-step form.
Figure 4 shows the composition of a Reduce-scatter followed

3All-reduce performance is critical in scientific simulation and machine
learning applications.
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Fig. 4: Composition of (c) All-Reduce function as (a) Reduce-Scatter followed
by an (b) All-Gather on three processes. The registration takes three reduc-
tion primitives, followed by a fence, and then followed by three multicast
primitives. The dashed edges on the broadcasts can be omitted for in-place
implementation.

1 using namespace HiCCL
2 // persistent communicator
3 Comm<float> comm();
4 // step 1) register Reduce-scatter using primitives
5 for(int j = 0; j < numproc; j++)
6 comm.add_reduction(sendbuf + j * count, recvbuf + j *

count, count, all, j, op::sum);
7 // step 2) register fence to express data dependency
8 comm.add_fence();
9 // step 3) register All-gather using primitives

10 for(int i = 0; i < numproc; i++)
11 comm.add_multicast(recvbuf + i * count, recvbuf + i *

count, count, i, others);
12 // optimization parameters for Aurora
13 std::vector<int> hierarchy{numproc / 12, 6, 2};
14 std::vector<Library> library{MPI, IPC, IPC};
15 int stripe(1); // number of stripes, default: 1
16 int ring(1); // node count in the ring, default: 1
17 int pipeline(16); // pipeline depth, default: 1
18 // initialization
19 comm.init(hierarchy, library, ring, stripe, pipeline);
20

21 comm.start(); // nonblocking start
22 // do other things...
23 comm.wait(); // blocking wait

Listing 2: Sample program for composing All-reduce as a Reduce-scatter
followed by an All-gather.

by an All-gather that is functionally equivalent to the single-
step All-reduce, but has higher throughput. In the multi-
step algorithm, each GPU first reduces partial data from all
GPUs and then broadcasts the result. To build this pattern,
the user registers 1) p reduction primitives, 2) a fence, and
3) p multicast primitives in sequence, as shown in Listing 2
Lines, 4–11, where all is the vector {0, 1, 2, · · · , p−1}. Note
that the receive buffer is reused for reducing partial data and
therefore others represents the vector of all ranks but that
of the root GPU.

The fence is a mechanism to express data dependencies
between collections of primitives. HiCCL enforces the fine-
grain dependencies between individual primitives in differ-
ent steps without a global synchronization. For example, in
Figure 4, M0 depends on R0, M1 depends on R1, and M3

depends on R3. During execution, M0 executes immediately
after R0’s completion, independent of M1 and R2. However, it
is inefficient for M0 to wait until the output of R0 is complete.
Pipelined execution (Section IV-E) solves this problem by
overlapping the execution of all primitives (on different data)



without violating data dependencies that are expressed with
the logical fences.

Listing 2 presents registration of primitives into the commu-
nicator created in Line 3. Once the composition of primitives
is registered, the communicator is initialized in line 19 of
Listing 2 with the optimization parameters (Section IV-A).
HiCCL provides start() and wait() functions for run-
ning the collective function. The former initiates the optimized
communications from the CPU (although they take place on
GPUs) and returns immediately. The latter blocks the CPU
until the communication buffers on the corresponding GPU
are safe to be reused.

IV. OPTIMIZATIONS

HiCCL applies a set of hierarchical optimizations to any
collective pattern built with the primitives in Section III-A.
These optimizations depend on a set of machine-specific
parameters that are explained in this section.

A. Optimization Space

HiCCL’s optimization space is described with five parame-
ters:

1) Integer factors of p for describing the network hierarchy
(a vector).

2) The choice of implementation library for point-to-point
communication for each level (a vector).

3) The striping factor for NICs (s).
4) The number of nodes for a ring (n).
5) Pipelining depth (m).

The parameters 1, 3 and 4 depend on the machine architecture,
while 2 depends on the communication software stack and
5 depends on the message length. Note that HiCCL does
not provide its own point-to-point communication operations,
rather HiCCL can leverage the best available operations,
including using different libraries for different levels of the
communication hierarchy.

The optimizations are applied at the initialization step,
after the collective composition (Section III) is defined. As
an example, Listing 2 shows the parameters for a specific
system in Lines 12–17. HiCCL does not automatically select
these parameters, which are part of the input; however, in
our experiments we found that we were able to reuse the
same description of the network hierarchy for all collective
communication operations on a particular machine. The pa-
rameters represent a virtual communication hierarchy that need
not match the physical communication hierarchy, but of course
the best performance will be achieved when the specified
hierarchy matches the underlying machine.

B. Hierarchical Tree Structure

To exploit different network architectures, we parameterize
the shape of the network hierarchy (see Figure 5) using a
vector of integer factors (Listing 2, Line 13) that specifies
a multilevel communication tree. Figure 5 (e) {2, 6, 2} repre-
sents a three-level tree structure of 24 GPU endpoints. Assume
there are two nodes, each node has six devices, and each device
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Fig. 5: Various tree structures and their notations across 24 GPUs. The exam-
ples shows (a)–(b) two, (c)–(d) three, and (e)–(f) four levels of hierarchies.
The colors represents different communication links across: level 1 (red), level
2 (yellow), level 3 (green), and leaf (blue) levels. HiCCL implements each
level with a the chosen communication library.

has two GPU dies. At Level 3, the first factor 2 partitions the
endpoints into two groups of 12. At Level 2, the two nodes are
sub-divided into six groups of two dies each. The leaf Level 1
specifies that the two dies within a device form a single group.

HiCCL assumes that the rank of each process/GPU is
assigned in a way that reflects the network hierarchy; for
example, Figure 5(c) represents a machine with 4 GPUs per
node. Every sequence of four rank IDs, where the first is
divisible by 4, represents the GPUs in a single node. Thus,
the desired grouping of GPUs at each level is fully determined
by the machine description and the numbering of ranks. The
examples in Figure 5 are shown for a full set of leaves (GPUs).
In case of custom collectives, the tree structure is pruned
according to the sparsity of the leaf GPUs.

In practice, each level of the communication hierarchy has
separate hardware and software, which means that different
libraries may have very different performance at different
levels of the hierarchy. As noted above, HiCCL allows spe-
cific libraries to be used at specific levels of the hierarchy
to optimize communication for a specific system. For the
mixed-library implementation of HiCCL, the library used for
communication at each level of the hierarchy is specified as
in Listing 2, Line 14. See Section V-A for options.

C. Multi-NIC Striping

Consider a broadcast factorized on 12 GPUs as {2, 2, 3}.
The last level represents nodes with three GPUs each. The
resulting tree structure has three levels, which are shown with
dashed lines in Figure 6 (a). The message hops across nodes
as 1⃝ orange dashed hop (g0-to-g6) and 2⃝ green dashed hops
(g0-to-g3 and g6-to-g9). Then each staging GPU (g0, g3, g6,
g9) multicasts the data within nodes with 3⃝ red dashed hops.
The problem is that each staging GPU is potentially bound
to a single NIC (Section II-C), and therefore the hops across
nodes underutilize the multi-NIC node architecture.
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NICs). With striping, (a) tree forms four stages 0⃝– 3⃝ and (b) ring forms five
stages 0⃝– 4⃝, where each stage depends on the previous. The dashed route
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The aim of striping is to use all GPUs (and hence all
NICs) in the inter-node communication (Section II-C). This
heuristic splits each primitive into s = 3 parallel “stripes”
in the corresponding root node, since there are g = 3
GPUs per node, which is achieved by an additional set of
intra-node communication, as shown with 0⃝ solid golden
hops. Striping is internally composed as

∑{g1, g2}
j R(0, j, d/s),

followed by a fence (Section III-C). For preserving the original
dependencies, each GPU in the root node (g0, g1, g2) must
multicast the corresponding partial data to all GPUs, i.e.,∑{g0, g1, g2}

i M(i,others, d/s), where others represent all
GPUs but i. The three parallel branches are further factorized
recursively down to the point-to-point dependencies. As a
result, striped factorization produces multi-rail communication
patterns, automatically utilizing all NICs in the participating
nodes. Figure 6 shows striping of (a) tree (making all striped
lines solid) and (b) hybrid ring+tree (explained next).

D. Hybrid Ring+Tree Topology

A ring forms a communication chain across n conceptual
nodes. Figure 6 (b) gives an example for ring(4), where 4
is the number of nodes. To fully utilize the NICs, we employ
striping by setting stripe(3) because there are three GPUs
per node, resulting in the extra 0⃝ golden hops. The striped
ring starts from the root node and each stripe unfolds across
1⃝ (N0 to N1), 2⃝ (N1 to N2), and 3⃝ (N2 to N3), until

terminating in the last leaf node (N3). Finally, the partial
data is assembled on all leaf GPUs with 4⃝ red hops, that
are factorized using a tree within each node, resulting in a
hybrid ring+tree pattern. A tree-only communication pattern is
achieved using ring(1), where there is only one conceptual
node with all (p) GPUs and effectively no ring.

Overall, HiCCL factorizes each primitive with 1) striping, 2)
ring, and 3) tree (in this order)—down to a dependency graph
composed of multiple point-to-point communication stages. In
the execution of this graph, each stage depends on the previous
one, causing idle GPU time. To minimize idle time, HiCCL
overlaps the communication stages with a generalized pipeline
as we explain next.
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Fig. 7: Pipelining and the overlapped pattern of hierarchical communications
for broadcast with (a) tree and (b) ring+tree virtual topologies. The machine
models that produce these patterns are noted in the figure. In this case, HiCCL
employs different implementation libraries (specifically, MPI, NCCL or IPC)
for mixed communications across levels of the hierarchy.

E. Pipelining

HiCCL employs a pipelining optimization that overlaps
communication across all steps of a multi-step collective
operation. A sequential execution pipeline is made up of a
series of stages that are marked with numbers as shown in
Figure 7 (m = 1), where m is the pipeline depth. Each stage
involves 1) a collection of point-to-point communications, or
2) the former followed by a set of computations (if a reduction
is involved) to be executed on GPUs.

Figure 7(a) shows the pipeline for the tree example in
Figure 6(a). When m = 1, stage 0⃝ corresponds to the intra-
node striping, 1⃝– 2⃝ corresponds to a two-level binary tree
across nodes, and 3⃝ corresponds to the intra-node assembly.
Similarly, Figure 7(b) shows the pipeline for the ring example
in Figure 6(b). The original ring pipeline (m = 1) requires
three stages across nodes that takes approximately 1.5 times
longer to complete. By overlapping communications across
nodes the ring is two times faster than a tree for this example.

To overlap the execution of multiple stages, without violat-
ing data dependencies, we partition the original payload (d/s)
bytes across m channels in the pipeline, where each channel
executes on d/s/m bytes at a time. We overlap all channels
in the final form of the execution pipeline as seen in Figure 7
(m = 5). In the final form, there are a few partially overlapped
stages in the “warm-up” and “wind-down” of the pipeline,
whereas the middle stages are fully overlapped. To overlap
all stages, the pipeline must be deeper than the number of
stages, which requires at least four channels for (a) tree and
five channels for (b) ring in the examples in Figures 6–7.



The overlapped communication pattern changes across the
stages of the pipeline. To illustrate, we represent the fully
overlapped pattern with a hierarchical communication matrix
in Figure 7 (bottom) for the (a) tree and (b) ring examples.
Each non-zero entry in the matrices corresponds to a point-to-
point communication. All entries are executed with the spec-
ified library for that level of the hierarchy. For demonstrating
the mixed use of libraries, (a) tree uses 1⃝ MPI across the
two groups of 6 GPUs, 2⃝ NCCL across nodes in the same
group, and 3⃝ IPC within nodes, i.e., 3×3 diagonal blocks in
the matrices in Figure 7 (bottom). In (b) ring, we assume no
hierarchy across nodes, and we use IPC in the diagonal blocks
and NCCL elsewhere.

F. Performance Model

The communication cost for the Broadcast examples with
pipelining are shown for (1) ring and (2) tree on n conceptual
nodes with no physical hierarchy. The first and second terms
correspond to inter-node and intra-node communication cost,
respectively. Here, the variables represent α: communication
latency, m: pipeline depth, k: number of NICs (per node), f :
NIC bandwidth, and d: message length.

tring =

(
α+

d

kfm

)
(n+m− 2) +O(d/m) (1)

ttree =

(
αm+

d

kf

)
log n+O(d/m) (2)

We model the intra-node cost as O(d/m) because the
details depend on the specific node architecture. Regardless,
pipelining hides that cost and the residual intra-node overhead
shrinks with 1/m, as clearly seen in Figure 7 (red stages).
Asymptotically, an infinitely deep pipeline (m → ∞) with
zero latency (α = 0) hides the intra-node communication
overhead completely. In practice, pipelining is most useful
for large message sizes, where the latency term is negligible.
Asymptotic pipelining yields tring ∼ d/kf that does not
depend on the number of nodes, i.e., O(1). On the other hand,
ttree ∼ d log n/kf = O(log n). On four nodes (n = 4) ring is
theoretically two times faster than tree, and we will show this
experimentally in Section VI-C.

TABLE III: Asymptotic Collective Throughput in GB/s

Broadcast Gather / All-Gather All-Reduce All-to-AllReduce Scatter / Reduce-Scatter
kf kf

p

p− g
kf

p

2(p− g)
kf

p

g(p− g)

p: total # participated GPUs, g: # GPUs per node, k: # NICs per node,
and f : rated NIC bandwidth in GB/s.

As our theoretical baseline of all collectives in Table I, we
consider the upper bounds for throughput (GB/s) as shown in
Table III. This upper bound solely depends on the total number
of participating GPUs, collective pattern, the number of NICs
and GPUs per node, and the rated bandwidth per NIC.

TABLE IV: Summary of Node Architecture of Test Systems

System CPUs GPUs NICs B/W†

Delta 1 AMD EPYC 4 Nvidia A100 1 SS-11 25 GB/s
Perlmutter 1 AMD EPYC 4 Nvidia A100 4 SS-11 100 GB/s
Frontier 1 AMD EPYC 8 AMD MI250x* 4 SS-11 100 GB/s
Aurora 2 Intel Xeon 12 Intel PVC* 8 SS-11 200 GB/s

*Each AMD MI250x and Intel PVC device involves two processor “dies”
or “tiles”, which we count as separate GPUs.
† Rated unidirectional node bandwidth based on the number of NICs.

V. IMPLEMENTATION

HiCCL is implemented in C++ for distributed applications,
libraries, and frameworks running on GPUs (and CPUs).
HiCCL requires MPI for initialization, even if the user does
not select MPI during execution.

A. Implementation Options

We implemented HiCCL by leveraging the point-to-point
communication API of the chosen library for each level of the
hierarchy. We integrated non-blocking point-to-point functions
of MPI, NCCL, RCCL, and OneCCL to be used within and
across nodes, and vendor-provided (CUDA, HIP or Level
Zero) IPC put and get to be used within nodes. We also
integrated CUDA, HIP and SYCL programming models for
targeting Nvidia, AMD and Intel GPUs, respectively.

B. Persistent Design

HiCCL takes advantage of repetitive collective function
calls by memoizing the optimized data movement and schedul-
ing in internal data structures. On the second and subsequent
uses of a communication operation, these structures are reused
to avoid the cost of making on-the-fly decisions. Furthermore,
HiCCL has no global synchronization either in the composi-
tion and synthesis nor in the execution.

VI. EVALUATION

We evaluate the performance portability of HiCCL across
eight commonly used collective functions in Table I and four
HPC systems with different hardware and software.

A. Experimental Setup

The node architectures of the test systems are summarized
in Table IV, showing various numbers of CPUs, GPUs and
NICs per node. We compare HiCCL collective throughput with
that of a) corresponding native MPI implementations and b)
vendor-provided collective communication libraries (NCCL,
RCCL or OneCCL) on each system. The MPI implementations
are based on OpenMPI (OMPI) for Delta and modified ver-
sions of MPICH for Perlmutter, Frontier and Sunspot. NCCL
and RCCL use the AWS-ofi extension for portability to the
Slingshot (SS-11) networks on these machines [2].

B. Measurements

We measure the peak throughput of each collective function
on each system. We run the end-to-end collective function
in multiple rounds: 5 warmup rounds and 10 measurement
rounds. In each measurement round, we measure the elapsed
time from a global synchronization to the moment that the
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(b) Four nodes of Perlmutter (4 GPUs & 4 NICs per node)
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(d) Four nodes of Aurora (12 GPUs & 8 NICs per node)
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(c) Four nodes of Frontier (8 GPUs & 4 NICs per node)
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Fig. 8: Peak collective throughput (GB/s) on (a) Delta, (b) Perlmutter, (c) Frontier, and (d) Aurora. HiCCL optimizations are applied incrementally, where
the frames around bars represents the theoretical limit based on the rated NIC performance. Triangle marks represents empirical bounds based on isolated
measurements across two nodes. HiCCL throughput reaches to the empirical bounds on all systems, demonstrating performance portability across architectures.

communication buffers on all GPUs are safe to be reused.
We run collectives with buffer sizes of pd bytes. For example,
Scatter sends d bytes to each of the p processors. If a collective
requires t seconds to execute, the throughput is dp/t (GB/s).
We vary d across large message sizes (larger than a MB) until
the throughput saturates the achievable bandwidth.

C. Collective Throughput
Figure 8 (a)–(d) shows the peak collective throughput on

four nodes of each test system. We use available library im-
plementations, presented with light blue (MPI) and dark blue
(NCCL/RCCL/OneCCL) colors, as baselines. We confirmed
these baseline results with administrators of each system, in
some cases setting tuning flags when advised to do so.

1) Overall Speedup: In Figure 8, HiCCL results are shown
with four bars, representing the incremental effect of optimiza-
tions. When all optimizations are applied, HiCCL’s geomean
speedup over the MPI implementations is 12.52×, 14.22×,
9.76×, and 48.02× on Delta, Perlmutter, Frontier, and Aurora,
respectively. On the other hand, the speedup over vendor-
provided libraries is 1.26×, 1.05×, 1.55×, and 12.01× on the
respective systems. The comparison suggests that while MPI
implementations are not optimized for throughput, vendor-
provided libraries generally are, with the exception of OneCCL
on Aurora.

The rest of this subsection discusses the effect of individual
optimizations of HiCCL on tested collective functions.

2) Hierarchical Optimizations: Red bars in Figure 8 repre-
sent direct implementations of collectives with non-blocking
point-to-point functions, assuming there is no hierarchy across
GPUs—i.e., the description of the network hierarchy for these
experiments is just {p}, where p is the number of participat-
ing GPUs. Direct implementations use NCCL on Delta and
Perlmutter, and MPI on Frontier and Aurora as they are the
most performant options.

Orange bars in Figure 8 represent hierarchical optimizations
with various factorizations (Section IV-B) that are specific
to each system. These factorizations are shown in the third
column of Table V, where the bold entries represent the
hierarchies within nodes. Within nodes, Delta and Perlmutter
are represented with a single level, e.g., 4, due to the directly
connected GPUs. On the other hand, Frontier and Aurora
nodes consist two-level hierarchies, e.g., {4, 2} and {6, 2},
where the lower level represents the dual-die devices and
the upper level represents high-bandwidth links betweeen
these devices. Frontier has four devices and Aurora has six
devices per node. On the other hand, the factorizations across
nodes are to form virtual topologies with multi-rail tree (two
levels) or ring (single-level) structures across nodes. Overall,
hierarchical optimizations obtain a geometric average of 4.08×
speedup over the direct baseline on all systems and collectives.

3) Multi-NIC Striping: Green bars in Figure 8 represent the
throughput with HiCCL’s multi-NIC striping (Section IV-C).



TABLE V: Hierarchical Factorizations and Libraries Used in Figures 8–9

System Topology Hierarchy Implement. Library
Delta / Tree {2, 2, 4} {NCCL, NCCL, IPC}
Perlmutter Ring+Tree {4, 4} {NCCL, IPC}

Frontier Tree {2, 2, 4, 2} {MPI, MPI, IPC, IPC}
Ring+Tree {4, 4, 2} {MPI, IPC, IPC}

Aurora Tree {2, 2, 6, 2} {MPI, MPI, IPC, IPC}
Ring+Tree {4, 6, 2} {MPI, IPC, IPC}

This optimization is beneficial primarily for Broadcast and
Reduce collectives, as these do not inherently utilize all
NICs. On Delta, where each node has just one NIC, striping
offers limited advantages, evidenced by a 1.29× speedup. This
improvement is attributed to four GPUs utilizing the single
NIC more effectively than would a solitary GPU. In contrast,
on multi-NIC nodes, such as Perlmutter, Frontier, and Aurora,
striping yields speedups of 3.62×, 3.94×, and 4.76×, respec-
tively, demonstrating significant throughput improvements.

4) Pipelining: Yellow bars in Figure 8 represent the
pipelining optimization (Section IV-E). Pipelining hides intra-
node communications with a tree topology and also provides
asymptotic speedup with a ring+tree topology. To demonstrate,
we test HiCCL’s Broadcast and Reduce collectives with both
virtual topologies, denoted as “Tree” and “Ring” in Figure 8.
We observe that the ring obtains up to 2.72× speedup (on
Perlmutter) yet does not saturate the throughput up to its
theoretical limit. All other collectives use the tree topology,
and pipelining is effective on systems with significant intra-
node communication yet obtains no more than two times
speedup. To explain these limitations, we use empirical bounds
that are explained next.

5) Upper Bounds: The frames around our HiCCL results
in Figure 8 represent the theoretical upper bounds that are
given in Table III. Aurora is a special case because round-
robin assignment (Section II-C) of 12 GPUs to 8 NICs. In
this case, GPU i is assigned to NIC i mod 8, yielding GPUs
0–7 assigned to NICs 0–7 whereas GPUs 8–11 oversubscribe
NICs 0–3. As a result, the first four NICs handle two GPUs
each, whereas the remaining NICs handle a single GPU each,
leading to load imbalance. Thus, the achievable bandwidth on
Aurora is limited to 75% of the theoretical bandwidth with
this strategy.

Even though we apply all optimizations aggressively and
use large buffer sizes to saturate throughput, we converged to
only a fraction of the theoretical limits. To understand why,
we measured the unidirectional and bidirectional bandwidth
across two nodes in isolation rather than using the numbers in
the spec sheet. These empirical upper bounds are indicated
by hollow (unidirectional) and striped (bidirectional) trian-
gles marks in Figure 8. For example, the empirical bounds
for Gather and Scatter are considered unidirectional, as the
bottleneck in these operations is the root node, which either
receives or sends messages in only one direction. On the other
hand, other collectives send and receive messages at the same
time and therefore their empirical bounds are the bidirectional
utilization.

A surprising result is that the intra-node communication cost
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Fig. 9: Throughput with various pipeline depths and buffer sizes for tree
implementation of (a) Gather and (b) Scatter, and ring+tree implementation
of (c) Broadcast and (d) Reduce on four nodes of Perlmutter.

on Frontier is higher than that of inter-node communication,
which prevents us from hiding the former with the latter, even
when we align the virtual hierarchy with the node architecture.
Therefore we also measured the intra-node cost in isolation
and marked the corresponding empirical bound with dark
triangles in Figure 8(c). Nevertheless, our results suggest that
HiCCL almost always comes close to the maximum potential
of the machine in practice.

D. Pipeline Depth

Although pipelining improves communication throughput,
it must be used with caution. When applied too aggressively,
message sizes become so small that the latency overhead
between stages dominates, negatively impacting the overall
throughput, as suggested in Equations (2)–(1). To illustrate this
phenomenon, we vary the pipeline depth across four nodes of
Perlmutter

Figure 9 shows the performance curves of (a) Gather and
(b) Scatter with tree, and (c) Broadcast and (d) Reduce with
ring across various pipeline depths (m) 1 to 128, where
m = 1 means no pipelining and m = 128 means pipelining
with 128 channels. Pipelining clearly improves throughput for
large message lengths. Nevertheless, excessive use for smaller
messages reduces the throughput.

Further implications of pipelining depend on the optimized
communication pattern. In this case, we apply the tree al-
gorithm for Gather / Scatter, and ring+tree algorithm for
Broadcast / Reduce. Effectively, pipelining hides the intra-node
communications with the tree implementation, and therefore
converges to the empirical bound with a pipeline of only k = 4
stages. On the other hand, pipelining provides asymptotic
speedup with the ring implementation, and it requires up to
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Fig. 10: Scaling on (a) Perlmutter and (b) Frontier. HiCCL applies throughput-
oriented optimizations, e.g., pipelining, that are effective up to 256 nodes. The
performance difference between NCCL and HiCCL are mainly due to the
kernel call overhead involved in reductions, where NCCL is more optimized.

k = 32 levels in the pipeline to saturate the throughput. We
observe similar behavior across all of our test systems.

As a reference, we take MPICH (light blue) and NCCL
(gold) library implementations as well as the aforementioned
empirical bounds. Since NCCL does not offer Gather and
Scatter collectives, we implement them directly with NCCL’s
point-to-point functions, as represented with the red curves.
In (d) Reduce, even a deep pipeline falls short of NCCL’s
throughput. Remember that Reduce involves an additional
computation that requires a GPU kernel call. NCCL success-
fully hides the computational overhead with a CUDA stream-
ing mechanism. We do not apply CUDA-specific optimizations
for the sake of generality.

E. Scaling

Figure 10 demonstrates scaling on (a) Perlmutter and (b)
Frontier. We use the All-reduce collective with the two-step
formulation (Section III-C) on both machines: We compose
the collective only once with the proposed API and change
the virtual hierarchy across machines. HiCCL is compared
with MPI, NCCL and RCCL, where available. To saturate the
network in these experiments, buffer sizes were selected to be
large (8.6 GB on Perlmutter and 17.2 GB on Frontier), which
were determined based on the device memory capacity. Due
to MPI’s limitations with large buffer sizes [17], a 1 GB buffer
size was used for MPI in the experiments on both machines.

The scaling experiments on Frontier reveal the limitation
of throughput-oriented optimizations we applied in this work.
When scaled to more than 256 nodes (2,096 GPUs), the ratio
of communication to computation drops significantly so that
latency becomes the main bottleneck. In principle, latency-
oriented collective design can be achieved with HiCCL’s API,
however, it is not in the scope of this work. Additionally, MPI
on Frontier is tuned to minimize latency at large scale, and
therefore preferable to any other communication library on
more than 256 nodes.

VII. RELATED WORK

To the best of our knowledge, HiCCL is the first composi-
tional library that offers unified hierarchical communications
across systems with Nvidia, AMD and Intel GPUs.

Previous work [6] implemented a multi-NIC striping algo-
rithm with a lower-level communication API and for CPUs.
For HiCCL, we applied the multi-NIC striping idea in the
context of modern node architectures, where the endpoints
are GPUs. We integrated the proposed striping algorithm with
a high-level (GPU-aware) communication library, exploiting
the fixed logical associations between GPUs and NICs as
explained in Section II-C.

There is a body of previous work towards hierarchi-
cal collective communications. Nevertheless, they are either
collective-specific [3], [24], system-specific [18], hardware-
specific [13], [14], single-node [4], or CPU-only [25]. HiCCL
optimizes all collective functions with unified optimizations,
achieves portability across architectures, and also demonstrates
high throughput across systems of different GPU vendors
(Nvidia, AMD and Intel).

A similar line of research (MSCCL [4], [22], [27]) takes a
different path on decomposition-based generalized optimiza-
tion by building a larger programming system with a domain-
specific language and code generation. However, the previous
work’s scalability is limited up to 16 GPUs due to the cost of
code synthesis based on an SMT solver [7]. In contrast, HiCCL
is a standalone runtime library that strives to be minimal and is
scalable up to hundreds of nodes. Specifically, the initialization
cost of HiCCL does not take more than six seconds on a
thousand GPUs.

VIII. CONCLUSION

HiCCL is a high-level communication library for optimizing
collective functions. The collective pattern is built using the
proposed compositional API (Section III). HiCCL applies
hierarchical factorization on the original pattern, and optimizes
it for a described machine (Section IV). The generalization
of hierarchical optimizations across collective communica-
tions and machines is HiCCL’s highlight contribution. We
implemented the library to be portable across Nvidia, AMD
and Intel GPUs, and across various communication fabrics.
In this way, the throughput of eight collective functions are
improved on four distinct machines with different architectures
and vendors. The geometric speedup of HiCCL is 17.0× over
the native GPU-aware MPI implementations on all systems,
1.15× over NCCL, 1.55× RCCL, and 12.1× OneCCL where
available. Our evaluation demonstrates scalability up to 256
nodes (1,024–2,048 GPUs). HiCCL not only addresses the
immediate challenges posed by the current diversity in hierar-
chical networks, but also sets a foundation for future-proofing
collective communication optimizations against the backdrop
of evolving HPC landscapes.
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