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ABSTRACT
This short paper describes an experimental prototype of in situ
visualization in a task-based parallel programming framework. A
set of reusable visualization tasks were composed with an existing
simulation. The visualization tasks include a local OpenGL ren-
derer, a parallel image compositor, and a display task. These tasks
were added to an existing fluid-particle-radiation simulation and
weak scaling tests were run on up to 512 nodes of the Piz Daint
supercomputer. Benchmarks showed that the visualization compo-
nents scaled and did not reduce the simulation throughput. The
compositor latency increased logarithmically with increasing node
count.
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1 INTRODUCTION
The dominant scientific visualization paradigm is in transition from
dedicated visualization clusters to in situ visualization on the largest
exascale systems [7, 10]. Scalable visualization subsystems are based
on sort-last graphics architectures and effective MPI-based imple-
mentations of sort-last have been developed [9, 11].

Task-based parallelism is an alternative to the message pass-
ing paradigm of parallel computing. The current paper describes
experimental support for in situ visualization in one task-based
framework, Legion [1]. This is accomplished by composing an ex-
isting fluid-particle-radiation simulation [5] with new tasks for
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rendering, compositing, and displaying imagery. The modified sim-
ulation was run on up to 512 nodes of the Piz Daint supercomputer.
Results showed that the throughput of the modified simulation was
unimpeded by the visualization tasks and that the compositor tasks
scaled logarithmically.

The contribution of this paper is a model of scalable visualiza-
tion in a task-based framework. The rest of this section describes
the Legion framework and the simulation. Section 2 describes the
visualization tasks that were composed with the simulation. Section
3 describes the experimental results, and Section 4 concludes with
a discussion of future near term work.

1.1 Related work
Moreland provided a solution to the compositor problem for MPI
based applications [11]. Biedert et al report on a task-based compos-
itor for parallel volume rendering using OSPRay and HPX [4]. They
segmented the problem in image space and performed back-to-front
compositing, overlapping compositing with rendering.

1.2 Task-based Programming
Task-based programming is an alternative to the message-passing
paradigm represented by MPI. In task-based programming models
the programmer defines (parallel) tasks and also provides infor-
mation about data dependencies between tasks. Armed with this
information a runtime system can schedule tasks and data auto-
matically to maximize parallelism and throughput. A programmer
is relieved of the need to explicitly handle parallelism, synchro-
nization and communication. Because tasks and dependencies are
machine independent the programmer also has considerable flexi-
bility in how a program is mapped on to a particular machine.

Task-based programming affords compositionality in that differ-
ent task-based programs or modules can be easily composed. This
paper reports an experiment of combining a visualization library
with an existing scientific simulation. The visualization library is
reusable by other future programs.

Legion is a framework for task-based parallelism with sequen-
tial semantics[1, 2, 12–17]. Legion programs are sets of tasks that
operate on collections of data. Programmers define a sequence of
tasks with explicit privileges describing the data used by each task.
A runtime system derives the dependencies among tasks and auto-
matically schedules task execution and data transfers to maximize
system throughput while preserving the sequential semantics.

Application data is contained in Logical Regions that are analo-
gous to relations in a relational data base. A Logical Region is based
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on a coordinate system called an Index Space that may be regular
or irregular.

Logical Regions have neither an implied locationwithin themem-
ory hierarchy of the machine nor a fixed physical layout. Instead
the runtime instantiates one or more Physical Regions containing
the data when and where they are needed for task execution.

Legion provides two levels of programming: an API callable
from C++, and a more concise high-level language called Regent
[13]. Both levels use the same runtime system and have similar
performance. The visualization subsystem was prototyped using
both of these levels. The measurements presented in this paper are
from the Regent implementation.

1.3 Simulation
Soleil-X is a turbulence/particle/radiation solver written in the
Liszt-Ebb Domain Specific Language for execution with the Legion
runtime [3, 5]. The simulation is an initial value problem consisting
of a regular grid for solving the compressible Navier-Stokes equa-
tions, a set of particles that are advected by the fluid velocity field,
and a radiation model.

Figure 1 shows an early frame from the simulation. The visu-
alization shows the fluid velocity field with particles advected in
the flow. Color coding is used to show the radiated quantities (e.g.
temperature).

Figure 1: Simulation after 8 time steps showing velocity vec-
tors and particles color coded according to temperature.

2 VISUALIZATION SUBSYSTEM
The visualization subsystem is implemented by three tasks that are
composed with an existing Legion simulation. These tasks render
imagery, composite the result, and display it.

A simulation proceeds through a number of time steps, issuing
simulation tasks at each step. On some time steps the visualization
subsystem is invoked in the form of two new tasks: Render and
Reduce. These tasks work together to produce a global snapshot
of system state in the form of a high resolution image. This image
can be mapped to display devices using a third new task: Display.

The simulation tasks run as a set of OpenMP processes across 8 of
the cores. The remaining cores are used for system processes. Since
the visualization tasks do not run under OpenMP they also run on
one of the remaining cores. This makes it possible to ensure that

visualization is overlapped with simulation. This is accomplished
by writing a custom mapping function that gives the render task
a separate copy of the simulation data. This breaks a write-after-
read dependence and effectively implements double-buffering but
without requiring any application-level logic.

The goals of the subsystem are to be reusable and to scale. Render
tasks are embarassingly parallel. Since each Render task is local to
a node it generates a fixed size image.1

The Reduce tasks run in parallel to collectively composite the
images that were just rendered. Their complexity depends on the
algebraic properties of the compositing operator which may be any
of the standard OpenGL blend functions, blend equations, or depth
functions. For the most common compositing operators the task
complexity is logarithmic, and for all other cases it is at most linear
in the number of nodes.

2.1 Render
The goal of the Render task is to produce at each node a rendered
image of the simulation data at that node. The image is in the form
of a Legion logical region containing pixels with fields R,G,B,A,Z.
The logical region has a 3D index space organized in width, height,
layer where each layer corresponds to one node. Each node renders
an image of width × height pixels to its corresponding layer of the
logical region.

The Render task is application-specific in that every application
will have different rendering requirements. Figure 1 shows the
output of the Render task. It visualizes a vector field containing
a set of particles. In a general purpose visualization package the
Render task would be implemented by the package.

The Render task was implemented using hardware accelerated
OpenGLwith EGL as described in [8]. After rendering the task reads
back the color buffer and the depth buffer (using glReadPixels) and
then copies the values from both buffers into the logical region.

2.2 Reduce
The goal of the Reduce task is to collectively composite all of the
rendered images into a common display image. The visualization
subsystem supports all of the OpenGL depth functions, blend func-
tions and blend equations. These functions fall into three cate-
gories: commutative-associative functions include all depth func-
tions; noncommutative-associative functions include the most popu-
lar blend functions; noncommutative-nonassociative functions in-
clude some less popular blend functions.

Each of these categories requires a different implementation
structure: commutative-associative reduction is implemented in a
tree with unconstrained leaf ordering; noncommutative-associative
reduction in a treewith specified leaf ordering; and noncommutative-
nonassociative in a serial chain. The tree takes O (logn) steps while
the chain takes O (n).

A full C++ API implementation was developed and tested. The
reduction operation performs a brute-force pixel-wise composite
of two images to produce a result image. The actual compositing
operations were implemented in C++ via a shim where the C++
code was copied from the C++ API implementation. The resulting

1Section 4 discusses extensions to arbitrarily large tiled displays.
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implementation was tightly coupled to the Soleil-X simulation.
Section 3 reports on the resulting performance up to 512 nodes.

2.3 Display
At the end of the Reduce tasks a fully composited image is left
in layer 0 of the logical region. One or more Display tasks then
transport the image pixels to their destination which may be either
a file system or a live (tiled) display. It is straightforward in Legion
to target a rectangular region of pixels to a specific Display task.
In principle this makes it easy to write a high resolution result to
multiple displays. The measurements presented in Section 3 were
taken using a file proxy as the display device. Final images were
written to files in PPM format and converted for offline viewing.

3 RESULTS
The modified simulation was run on the Piz Daint supercomputer in
configurations from 4 to 512 nodes. Piz Daint is a Cray XC40/XC50
petaflop class supercomputer that contains GPU and CPU nodes.
Each GPU node is a 12-core Intel Xeon E5-2690 coupled with an
NVIDIA Tesla GPU. Each CPU node contains a pair of 18-core Intel
Xeon ES-2695s. The nodes are connected by an Aries Dragonfly
network. Simulations were run on the XC50 GPU partition.

Figure 1 shows the early conditions of the simulation. The simu-
lation was run for 9 time steps and profiling data was collected and
analyzed. The initial startup interval and the first two time steps
were ignored to allow the program to achieve steady state.

Figure 2 shows the simulation and visualization subsystem scaled
from 4 to 512 nodes. This shows the scaling of the simulation was
not affected by the addition of the visualization tasks.

Figure 3 compares the latency of the reduce operation compared
to the latency of Ice-T, illustrating that Ice-T times are many times
lower than what was achieved here. There are several reasons for
this that are orthogonal to the relative strengths and weaknesses
of task-based and message passing-based systems. Ice-T is highly
optimized, employs multiple compositing algorithms, and com-
presses images (and work) using Run Length Encoding (RLE). The
SimpleTiming benchmark used to measure Ice-T draws a Rubik’s
cube centered in an empty screen which affords ample opportunity
for RLE. Byte pixels are used and read back through Pixel Buffer
Objects (PBOs).

In contrast the Reduce task is an unoptimized brute-force com-
posite over all pixels. Float pixels were used and were read back
through glReadPixels. This is slower than reading byte pixels through
PBOs.

It is interesting to node that while the latency for the unoptimized
task-based version increases logarithmically this does not affect
the speed of the overall simulation. In fact, the latency can exceed
the length of a time step and still not slow down the simulation
as the task-based approach does not require the simulation and
visualization systems to run in lock-step.2 Note that 512 nodes
demonstrated a latency increase (likely a performance bug) but this
did not impact the overall runtime.

Figure 4 shows the profiler user interface for node 0 of a 256
node run. The second line from the top is labeled "CPU Proc 3". This
processor runs the visualization tasks and this line shows a series of
2Optimizations would be necessary if we desired interactive performance.

long Render tasks (yellow) separated by short Reduce tasks (purple).
The bottom line is labeled "OpenMP Proc 5". This represents 8 cores
running the simulation in OpenMP mode. Additional cores are
used to run utility, IO and DMA processors. The OpenMP ABI
is implemented by Legion so there is no conflict between these
OpenMP cores and the cores assigned to visualization tasks.

Figure 5 shows a closeup of the same profile covering the dura-
tion of two render tasks. It shows that there is some idleness in the
processor running the visualization system. It also shows small idle
periods in the simulation that coincide with the end of a Render
task. This is a result of data transfers that occur in support of the
ensuing Reduce tasks.

Figure 2: Weak scaling of the modified simulation (green
line) and unmodified simulation (blue line) from 4 to 512
nodes.

Figure 3: The unoptimized compositor (blue line) versus Ice-
T (green line) from 4 to 512 nodes (weak scaling).
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Figure 4: Performance profile of node 0 in a 256 node run for
9 time steps.

Figure 5: Closeup of Figure 4.

4 DISCUSSION
The goal of the visualization subsystem is to offer a reusable frame-
work that can support a variety of in situ visualization requirements.
Although this paper reported results from a hybrid C++/Regent
implementation future plans are based on the C++ implementation
alone. This implementation will be reusable with any Legion pro-
gram regardless of whether the program is Regent-based or based
on the C++ API.

4.1 Visualization applications
One issue to consider is coupling to open source visualization ap-
plications [6, 18]. The Legion runtime contains explicit representa-
tions of all of the data in a Legion program. This information can
be provided to the visualization application to facilitate data access.

4.2 Large displays
The measurements reported here used a fixed size display of 3840
× 2160 pixels. This was chosen as the rendering size at each node.

Large tiled displays will require images that are larger than can
be rendered by a single node. This raises two related problems:
generating pixel values at all of these locations, and skipping empty
pixels. In the current framework these problems are unsolved. The
following proposal is being evaluated as a possible solution.

When a Reduce task is launched two projection functors access
the subsets of pixels in the logical region that are required for
the reduction. These functors know the location of the pixels in
the overall image. The size of a functor subregion is tunable and
generally on the order of one or more scanlines. The functors are
able to calculate whether the pixels fall outside of the rendered
subregion from a local Render task.

The proposal is to allow projection functors to indicate whether
their pixels fall within the locally rendered subregion. If both func-
tors have valid pixels then the Reduce task would proceed. If only
one functor has valid pixels then the Reduce task becomes a copy
operation. And if neither functor has valid pixels then the Reduce
task would not execute. We are evaluating this and other proposals.

5 CONCLUSION
This paper has demonstrated that a task based model allows nonin-
vasive composition of visualization tasks with an existing simula-
tion. The simulation showed the same scaling before and after the
composition and the reduction operation scaled logarithmically up
to 512 nodes. Visualization was overlapped with the simulation.

The problem of empty space skipping on large tiled displays is
not currently solved. It appears that a voting scheme based on pro-
jection functors may provide a solution. This proposal and others
are being evaluated.

The composition of taskswas accomplished noninvasively in that
only two lines needed to be added to the existing simulation (one
to initialize, the other to visualize). In contrast an MPI application
would have to deal explicitly with issues of synchronization and
communication.
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