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Abstract—The Linac Coherent Light Source (LCLS) is an X-
ray free electron laser (XFEL) facility enabling the study
of the structure and dynamics of single macromolecules. A
major upgrade will bring the repetition rate of the X-ray
source from 120 to 1 million pulses per second. Exascale high
performance computing (HPC) capabilities will be required to
process the corresponding data rates. We present SpiniFEL,
an application used for structure determination of proteins
from single-particle imaging (SPI) experiments. An emerging
technique for imaging individual proteins and other large
molecular complexes by outrunning radiation damage, SPI
breaks free from the need for crystallization (which is difficult
for some proteins) and allows for imaging molecular dynamics
at near ambient conditions. SpiniFEL is being developed to
run on supercomputers in near real-time while an experiment
is taking place, so that the feedback about the data can
guide the data collection strategy. We describe here how we
reformulated the mathematical framework for parallelizable
implementation and accelerated the most compute intensive
parts of the application. We also describe the use of Pygion,
a Python interface for the Legion task-based programming
model and compare to our existing MPI+GPU implementation.

Index Terms—Pygion, task-based parallelism, coherent diffrac-
tive imaging, image reconstruction, single-particle imaging,
free electron lasers, nonuniform fast Fourier transform

1. Introduction

The high repetition rate and ultrahigh brightness of the
Linac Coherent Light Source (LCLS) [1] make it possible
to determine the structure of individual molecules, mapping
out their natural variation in conformation and flexibility.
Structural dynamics and heterogeneities, such as changes in
the size and shape of nanoparticles, or conformational flexi-
bility in macromolecules are at the basis of understanding,
predicting, and eventually engineering functional properties
in the biological, material, and energy sciences. The ability

to image the structural dynamics and heterogeneities from
noncrystalline proteins is one of the driving forces behind
the development of XFEL facilities around the world. Single-
particle imaging (SPI) requires femtosecond pulses to outrun
radiation damage using a concept called diffraction-before-
destruction [2]. When an X-ray pulse interacts with a protein
freely rotating in space, a diffraction pattern is measured
on the detector before the protein is completely destroyed.
A train of identical proteins is injected into the interaction
region to replenish the sample, as shown in Figure 1.

Data analysis must be performed quickly to allow users
to guide their data collection strategy by providing feedback
on whether sufficient data has been collected and whether
the data quality is sufficient to achieve the desired resolution.
This will require near-real-time analysis of data bursts (within
tens of minutes from the completion of a given burst),
requiring commensurate bursts of computational power.

As a part of the U.S. Department of Energy’s Exascale
Computing Project (ECP), the ExaFEL project [3] aims to
create an automated analysis pipeline for SPI to transfer
diffraction data to supercomputers, where reconstruction
is performed, then report results within minutes of data
collection. This entails reconstructing a 3D molecular struc-
ture from 2D diffraction images by using the multi-tiered
iterative phasing (M-TIP) algorithm [4]. At a very high-level,
each diffraction pattern samples a 2D slice of a protein’s
3D Fourier transform. Orientation of the particle has to be
determined so that it can be merged in a 3D diffraction
volume. The assembled diffraction volume represents the
Fourier amplitude of our protein. By solving the phase
problem, we recover the 3D electron density of the molecule.
The steps are illustrated in Figure 2.

In Section 2, we present algorithmic improvements to the
state of the art SPI data analysis. In Section 3, we describe
GPU offloading and implementation in Pygion, a Python
interface to the Legion programming model which we demon-
strate on a modest number of nodes with reconstruction
results. In Section 4, we report on computational performance
and compare to the MPI+GPU reference implementation.



Figure 1: SPI involves recording several thousands to millions
of single-shot diffraction patterns of identical proteins before
its destruction due to ionization and Coulomb explosion.
Protein is replenished via a particle stream.

Figure 2: Reconstruction requires orientation determination,
classification into 2D class averages, and 3D merging of
intensities in reciprocal space. The Fourier magnitudes are
then used to synthesize a real-space image, but only after
recovering the phase information missing from raw data.

2. M-TIP Cartesian-NUFFT Framework

The existing M-TIP algorithm [4] relies on a spherical-
polar formulation that serially updates the 3D diffraction
volume to be consistent with each 2D image, and thus is
not scalable. In this section we present a new reformulation
of M-TIP based on the nonuniform fast Fourier transform
(NUFFT), which allows reconstruction to be parallelized.

A key part of the old algorithm, orientation matching to
align 2D images to a 3D model, is based on computing a
Wigner-D transform [5], [6] in a spherical basis. Instead, we
use a NUFFT of the autocorrelation of the current density
model to generate a set of model 2D diffraction images from
a fixed orientation grid, and then compare each experimental
2D image to the model image for each orientation.

After alignment, we merge the oriented diffraction pat-
terns into a 3D diffraction volume. Merging is accom-
plished through the inversion of a NUFFT, which provides

an unbiased approach to modelling the experimental data.
Furthermore, the availability of fast libraries for computing
NUFFTs [7], [8], coupled with iterative linear algebra solvers,
provide a scalable approach to recovering the 3D diffraction
volume from a large set of 2D diffraction snapshots.

Scaling the new Cartesian-NUFFT M-TIP framework
can be broken down into developing scalable code for four
main components: 1) slicing; 2) orientation matching; 3)
merging; 4) phasing, as illustrated in Figure 3. The following
subsections describe each of these components.

Figure 3: Scalable algorithm for SPI. Phasing (yellow) occurs
on a single node, but is independent of data size. Slicing
(blue), Orientation Matching (green), and Merging (red) scale
with number of images. Notation/nomenclature are in Table 1.

TABLE 1: Notation and nomenclature

Quantities

ρ(r) Electron Density of Sample
A(r) Autocorrelation of Electron Density
I(q) 3D Intensity Function / Diffraction Volume
I(qk) Model Diffraction Images / Model Orientations
Iexp Experimental Diffraction Images

Grids

r N3 Cartesian Real-Space Grid (N = 100− 500)
q N3 Cartesian Fourier-Space Grid (N = 100− 500)
qk Nonuniform Model Data (105 points)

2.1. Slicing

In this step, M 2D model images defined on a prede-
termined set of orientations are computed via the type-2
(uniform to nonuniform, a.k.a. “forward”) NUFFT of the
autocorrelation of the current electron density estimate.

2.2. Orientation Matching

Each of the N experimental 2D diffraction images are
compared to all of the M model images. The orientation
of each experimental image is taken to be that of the
model image that is closest in the Euclidean distance metric,
which scales as O(MN). Model images are initialized and
distributed at startup to minimize communication.

2.3. Merging

Merging can be formulated as inverting a type-2 NUFFT
on the oriented experimental data to solve for the autocorre-



lation of the electron density estimate, which is equivalent
to solving a linear, discrete ill-posed problem of the form

min
x
‖Ax− b‖2, (1)

where A is the NUFFT operator, x is a vector representing
the autocorrelation on a uniform grid, and b is a vector of
intensity data on a nonuniform grid.

However, in SPI experiments, the direct beam necessitates
a beam stop to prevent damage to experimental equipment,
resulting in a missing region in the detector center that cor-
responds to low frequency information. The incompleteness
of the data in combination with the high levels of noise lead
to instabilities and nonuniqueness of the solution.

The so-called ill-posed problems can be tackled by regu-
larization, where the experimental data are complemented
with external or prior information so that the two sources
of information together fully determine a unique solution.
Note that when splitting up the problem in M-TIP, since we
do not have access to all of the priors from constraints on
separate tiers, we penalize the perturbation of the model in
each tier. Specifically, we use Tikhonov regularization [9]
to approximate the exact solution, and convert the original
linear system into another linear system:

A∗DAx+ λ(x− x0) = A∗Db, (2)

where D is weights, λ is regularization parameter for the
penalty term, and x0 the initial guess of the autocorrelation.

The normal equations for the linear system can be ex-
pressed as a convolution on a Cartesian grid with dimensions
equal to the number of resolution elements per dimension
using the Toeplitz method [10]. Setting this up requires
two type-1 NUFFTs to be computed, one on the nonuniform
experimental data and one with the nonuniform data replaced
with 1’s. With this setup, only the type-1 NUFFT compu-
tations (computed just once) need to be distributed, since
they are a function of the entire experimental dataset. We
take advantage of the linearity of the NUFFTs by computing
them separately on the experimental data belonging to each
node, and use a reduction operation to compute their sum.
Once these type-1 NUFFTs are computed, the linear system
can then be solved efficiently via conjugate gradient. We
repeat this linear solve over nodes, where each rank attempts
the solve with a different set of regularization parameters,
and use the L-curve method [11] to select the best solution.

2.4. Phasing

The phasing step converts a 3D diffraction volume to a
molecular structure. Starting from a random seed state, we
repeatedly apply real-space constraints on the electron density
ρ and reciprocal-space constraints on its Fourier transform ρ̂
back and forth through the use of FFT and IFFT. In particular,
we apply combinations of error reduction (ER) [12], hybrid
input–output (HIO) [13] and shrinkwrap algorithms [14]
until convergence is reached.

Phasing only requires computing model values on a
Cartesian grid about the same size as the desired density
model and can be efficiently solved on just a single node.

3. Performance Optimization

In this section, we discuss the acceleration and scaling
strategy of our application.

3.1. Acceleration – GPU Offloading

Merging and slicing operations are offloaded to GPUs
using the cuFINUFFT [15] library, and data movement is
handled using pyCUDA [16]. We compare performance of
a multi-threaded instance using the FINUFFT [8] library
with OpenMP to an equivalent CUDA implementation on a
NVIDIA V100 and find that the forward function call runs
approximately 1.5× faster, and the adjoint function call runs
approximately 8× faster for our dataset. A single iteration of
merging requires one call to forward, and two calls to adjoint,
giving an overall 6× speedup over a similar CPU-only node.

Orientation matching is accelerated using approximately
800 lines of low-level CUDA code. We found this approach
performed better than using existing libraries such as Scikit-
learn [17] kNN or Facebook AI Similarity Search (FAISS)
[18], by a factor of 50× and 4×, respectively.

Compared to an equivalent NumPy code [19], offloading
phasing to GPU using CuPy [20] gives a 20× speedup.

3.2. Parallelization and Scaling – Pygion

To distribute the application across multiple CPUs and
GPUs on multiple nodes, we use Pygion [21], a Python
interface to the Legion task-based runtime system. We chose
Pygion because the task-based model is a natural fit for
the stages of the computation we described in Section 2,
and avoids the need for programmers to think about manual
data movement or synchronization. Instead, Pygion programs
are organized as sets of tasks (or functions) that appear to
execute sequentially, and regions, or data collections passed
to tasks. Programmers annotate the privileges (read, write,
etc.) of the arguments to a task, and the runtime system
is responsible for inferring dependencies and issuing data
movement as necessary to ensure the program can execute
seamlessly on a distributed supercomputer.

Our SpiniFEL implementation in Pygion is structured
by turning each major step in the application (as seen in
Figure 3) into tasks. The data and partitions in our application
are straightforward. For example, for the used images, we
simply create a region that holds all the images (even if
they could not fit on a single node) and then use Pygion’s
partitioning operators to decompose them into subregions.

4. Results

We evaluate our approach on Summit [22] using a
synthetic dataset. Each Summit node consists of 2 POWER9
CPUs, 6 Nvidia V100 GPUs and 512 GB of memory. Nodes
are connected via EDR InfiniBand, and GPUs via NVLink.
We consider two implementations, in Legion and MPI, and
perform weak scaling experiments up to 32 nodes.



4.1. Dataset

To test our framework, a noise-free synthetic dataset of
500,000 SPI images from a lidless Mm-cpn in the open state
from Protein Data Bank (PDB) entry 3IYF is generated, using
SPI simulation package skopi [23]. The images provided are
128 × 128 pixels, with resolution to the edge set to 12 Å.
Figure 4 shows samples of the simulated diffraction patterns.

Figure 4: Simulated diffraction patterns of a Mm-cpn at
random orientations.

4.2. Performance

Measurements are performed by distributing a different
set of 1,000 simulated diffraction images to each node. For
weak scaling, we increase the number of nodes from 1
(1,000 images processed) to 32 (for a total of 32,000 images
processed) on Summit, with 42 CPUs and 6 GPUs per node.

As shown in Figure 7, both the MPI and Legion versions
of SpiniFEL perform well with increasing numbers of nodes
as indicated by constant scaling. Compared to an equivalent
MPI implementation, Pygion is easier to scale out of the box
and leads to speedups of 1.5-fold or more as demonstrated in
Figure 5, due to its dynamically managed load-balancing of
tasks across cores, shared memory (between distinct Python
processes on a node) and high level parallelization constructs.
The net result is an alternative HPC programming model
capable of providing 3D electron density estimates from
large scale datasets in about an hour, as shown in Figure 6.

5. Discussion

Our MPI and Legion implementations both use an offload
model based on a combination of Python (CuPy), C++
(cuFINUFFT) and custom CUDA code. The kernel code,
i.e., between MPI send/recv calls or inside Legion tasks,
is identical between the two implementations. The main
difference is that in MPI these kernels are statically assigned
to ranks, whereas in Legion this assignment is controlled
by the mapper, a performance tuning interface that exists
separately from application code, and therefore is more
flexible in many ways, including enabling automatic data
layout transformations and task placement decisions.

Our analysis indicates that the performance difference, de-
spite identical code, is due to data layout differences. Legion
makes it easier to tune data layout for optimal performance,
as this can be done separately from the application code.

Figure 5: Scaling analysis for SpiniFEL proxy app on one
node: breakdown of the time spent in each module using
MPI and Legion programming model.

Figure 6: Reconstruction of a lidless Mm-cpn in the open
state (PDB ID: 3IYF) from simulated noise-free single-
particle diffraction data, displayed as density isosurfaces
(top and side views) using UCSF Chimera [24].

Figure 7: Weak scaling in MPI vs. Legion.

6. Conclusion

LCLS introduces opportunities for novel science in the
domain of SPI. We presented improvements to algorithms
in SPI that enable potential scaling to large node counts.
These algorithms have been implemented in SpiniFEL, an
accelerated and distributed implementation that leverages the
Pygion programming model.
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